Usage Guide

This guide covers how to use Prompt Alchemy effectively for both command-line and server-based workflows.

Quick Start

Command Line Interface

Generate your first prompt:

prompt-alchemy generate "Create a REST API endpoint for user management"

Start the MCP server for AI agent integration:

prompt-alchemy serve

Command Line Usage

Basic Prompt Generation

# Simple prompt generation
prompt-alchemy generate "Your prompt idea here"

# With specific persona
prompt-alchemy generate "Write a blog post about AI" --persona=writing

# Using specific provider
prompt-alchemy generate "Debug this code" --provider=openai

# Generate multiple variants
prompt-alchemy generate "API documentation" --count=5

Advanced Generation Options

# Use specific phases only
prompt-alchemy generate "Code review" --phases=prima-materia,coagulatio

# Set custom parameters
prompt-alchemy generate "Creative story" --temperature=0.8 --max-tokens=1500

# Add context and tags
prompt-alchemy generate "Database query" --context="PostgreSQL" --tags="sql,database"

# Auto-select best variant
prompt-alchemy generate "Email template" --auto-select

Searching and Retrieval

# Basic text search
prompt-alchemy search "API design"

# Semantic search with embeddings
prompt-alchemy search "user authentication" --semantic

# Filter by various criteria
prompt-alchemy search "code generation" --phase=coagulatio --provider=anthropic

# Filter by date and tags
prompt-alchemy search "database" --since=2024-01-01 --tags="sql,postgres"

Prompt Optimization

# Basic optimization
prompt-alchemy optimize -p "Write code" -t "Generate Python function"

# With specific persona and iterations
prompt-alchemy optimize -p "Create API docs" -t "Document REST endpoints" \
  --persona=writing --max-iterations=10

# Use different providers for generation and evaluation
prompt-alchemy optimize -p "Debug code" -t "Find Python bugs" \
  --provider=openai --judge-provider=anthropic

Management Commands

# View metrics and reports
prompt-alchemy metrics

# Update prompt metadata
prompt-alchemy update <prompt-id> --tags="new-tag" --notes="Updated notes"

# Delete prompts
prompt-alchemy delete <prompt-id>

# Validate configuration
prompt-alchemy validate

# Test provider connectivity
prompt-alchemy test-providers

Server Mode Usage

MCP Server (AI Agent Integration)

Start the MCP server:

prompt-alchemy serve

The server runs on stdin/stdout and accepts JSON-RPC calls. AI agents can connect and use all 15 available tools.

HTTP REST API Server

Start the HTTP server:

prompt-alchemy http-server

Default configuration:

  • Port: 8080
  • Host: localhost
  • Base Path: /api/v1

API Examples

Generate prompts via HTTP:

curl -X POST http://localhost:8080/api/v1/prompts/generate \
  -H "Content-Type: application/json" \
  -d '{
    "input": "Create a Python function for data validation",
    "persona": "code",
    "count": 3
  }'

Search prompts:

curl -X GET "http://localhost:8080/api/v1/prompts/search?q=API+design&semantic=true"

Get prompt details:

curl -X GET http://localhost:8080/api/v1/prompts/{prompt-id}

MCP Integration

Prompt Alchemy provides 15 MCP tools for AI agent integration:

Generation Tools

  • generate_prompts - Create new prompts through the alchemical process
  • generate_prompt_variants - Generate multiple variants of a prompt
  • optimize_prompt - Optimize existing prompts using meta-prompting

Search & Retrieval Tools

  • search_prompts - Text-based prompt search
  • semantic_search_prompts - Semantic search using embeddings
  • get_prompt_details - Retrieve detailed prompt information
  • list_prompts - List prompts with filtering options

Analysis Tools

  • analyze_prompt_performance - Analyze prompt effectiveness
  • get_prompt_metrics - Retrieve performance metrics
  • compare_prompts - Compare multiple prompts

Management Tools

  • update_prompt - Update prompt metadata
  • delete_prompt - Remove prompts from database
  • export_prompts - Export prompts in various formats

System Tools

  • get_system_info - Retrieve system configuration
  • validate_configuration - Validate current setup
  • get_provider_status - Check AI provider connectivity

Learning Mode

Enable adaptive learning to improve recommendations:

# Run nightly training manually
prompt-alchemy nightly

# Schedule automated training
prompt-alchemy schedule --time "0 2 * * *"  # Daily at 2 AM

# Check learning status
prompt-alchemy metrics --learning

Batch Processing

Process multiple inputs efficiently:

# From file
prompt-alchemy batch --input-file=prompts.txt --output-file=results.json

# From stdin
echo "prompt1\nprompt2\nprompt3" | prompt-alchemy batch

# With custom settings
prompt-alchemy batch --input-file=ideas.txt --persona=writing --count=3

Configuration Management

View and modify configuration:

# Show current config
prompt-alchemy config show

# Set configuration values
prompt-alchemy config set providers.openai.model "o4-mini"

# Validate configuration
prompt-alchemy config validate

# Export configuration
prompt-alchemy config export > config-backup.yaml

Best Practices

Prompt Generation

  1. Be specific: Provide clear, detailed input for better results
  2. Use personas: Match persona to your use case (code, writing, analysis)
  3. Leverage phases: Use specific phases when you need particular improvements
  4. Add context: Include relevant background information
  5. Use tags: Tag prompts for better organization and searchability

Search and Retrieval

  1. Use semantic search: For finding conceptually similar prompts
  2. Combine filters: Use multiple filters for precise results
  3. Regular cleanup: Delete outdated or ineffective prompts
  4. Export important prompts: Backup valuable prompts regularly

Server Deployment

  1. Use Docker: For consistent deployment across environments
  2. Monitor health: Regular health checks for production servers
  3. Secure API keys: Use environment variables for sensitive data
  4. Backup database: Regular backups of your prompt database

Troubleshooting

Common Issues

Configuration errors:

prompt-alchemy validate
prompt-alchemy test-providers

Database issues:

prompt-alchemy migrate

Server connectivity:

prompt-alchemy health --url=http://localhost:8080

Logs and Debugging

Enable debug logging:

prompt-alchemy --log-level=debug generate "test prompt"

View logs:

# Local logs
tail -f ~/.prompt-alchemy/logs/prompt-alchemy.log

# Docker logs
docker-compose logs -f prompt-alchemy

Next Steps